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Who Am I? I

I do research in the field of Knowledge Representation and
Reasoning.

Sandra Hüller

French German

Performance

actor

in lang.

type

actor

in lang.

type

spoken lang.

(a) KG

-10
-8

-6
-4

-2
	0 -8

-6
-4

-2
	0

	2

	1
	1.2
	1.4
	1.6
	1.8
	2

	2.2
	2.4
	2.6
	2.8
	3

(b) KG embeddings

Figure: Knowledge Graph (KG) representation with learnt embeddings



Who Am I? II
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Figure: KG embedding performances vs. parameter efficiency



Who Am I? III

I’m also working on lifecycle assessment of AI-based
(cyber-physical) systems.

This is why I am also a contact person for sustainable AI at IMT.



Why Symbiosis?

IMT has recently joined Enfield, a European excellence network.

Enfield partners are currently preparing a large-scale review on
Green AI. Its angle is “the state of symbiosis between AI and the
environment.”

Enfield: European Lighthouse to Manifest Trustworthy and Green AI, https://www.enfield-project.eu/.

https://www.enfield-project.eu/


Tackling Climate Change with AI

The AI research community actively seeks ways to leverage AI in
climate change mitigation and adaptation.

2019 creation of climatechange.ai

2020 publication of an extensive review with 898 references

2024 728 papers published on climatechange.ai

D. Rolnick et al. Tackling Climate Change with Machine Learning, ACM Computing Surveys, ACM, 2022.

https://www.climatechange.ai/
https://www.climatechange.ai/
https://doi.org/10.1145/3485128


AI for Energy Systems I

HVAC [Heating, ventilation and air conditioning] systems
account for more than half of the energy consumed in
buildings (...). For control, researchers used deep RL to
achieve a scalable 20% reduction of energy while requiring
only three sensors: air temperature, water temperature,
and energy use.



AI for Energy Systems II

Occupancy detection itself represents an opportunity for
ML algorithms, ranging from decision trees to deep neural
networks that take input from occupancy sensors, WiFi
signals, or appliance power consumption data



AI for Energy Systems III

Modeling energy use across buildings: ML can be used
to help predict energy consumption from features such as
the location, geometries, and various other attributes of
interest like building footprint, usage, material, roof type,
immediate surroundings, and the like.



AI for Energy Systems IV

Figure: Map of French inventoried EPCs over a neighbourhood of Lyon

M. Grossouvre, D. Rullière, J. Villot. Predicting missing Energy Performance Certificates: Spatial interpolation of
mixture distributions, Energy and AI, 2024.

https://doi.org/10.1016/j.egyai.2024.100339
https://doi.org/10.1016/j.egyai.2024.100339


AI for Freight Routing

Freight routing and consolidation: Many problem settings
are ad- dressed with methods from the field of operations
research. There is evidence that ML can improve upon
these methods, in particular mixed-integer linear program-
ming.



AI for Ecosystems I

ML can help infer biodiversity counts from image-based
sensors. For instance, camera traps take photos automat-
ically whenever a motion sensor is activated—computer
vision can be used to classify the species that pass by,
supporting a real-time, less labor-intensive species count.
It is also possible to use aerial imagery to estimate the size
of large herds or count birds.



AI for Ecosystems II

Using semi-supervised generative models and concrete
compression data, for example, researchers proposed novel,
low-emission concrete formulas that could satisfy desired
structural characteristics

A. Jain et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innova-
tion, APL Materials, 2013.

https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323


What About Finance?

To date, the field of climate finance has been largely ne-
glected within the larger scope of financial research and
analysis.



What About Circular Economy?

Circular economy isn’t mentioned in the paper

. . . despite 898 references.
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The Impact of AI

Figure: Summary of positive and negative impact of AI on the various
Sustainable Development Goals (SDGs).

R. Vinuesa et al. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals, Nature Com-
munications, 2020.

https://doi.org/10.1038/s41467-019-14108-y


The Negative Impact of AI

Figure: AlexNet to AlphaGo Zero: 300,000x increase in compute

D. Amodei, D. Hernandez. AI and Compute, OpenAI blog, 2018.

https://openai.com/research/ai-and-compute
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On Symbiotic Relations

A symbiosis, in its modern definition, isn’t necessarily mutually
beneficial. It is any long-term interaction between species.

A B
+

+

(a) Mutualism

A B
+

(b) Commensalism

A B
−

+

(c) Parasitism

Figure: Interactions between species



Green AI: Accuracy vs. Efficiency

Figure: Model parameters (in million), floating-point operations (in
billions), top-1 accuracy on ImageNet

R. Schwartz et al. Green AI, Communications of the ACM, 2020.

http://dx.doi.org/10.1145/3381831


The Carbon Impact of Compute

Consumption CO2e (t)
Air travel (NY ↔ SF, one passenger) 0.9
Human life average (1 year) 5
American life average (1 year) 16.4
Car average (incl. fuel, entire lifetime) 57
Semantic Role Labeling (SRL) pipeline 0.017

with tuning and experimentation 35.6
Transformer 0.087

with neural architecture search 284

Table: Estimated CO2 emissions from training common NLP models,
compared to familiar consumption.

E. Strubell, A. Ganesh, A. McCallum. Energy and Policy Considerations for Deep Learning in NLP, Proc. of 57th
Annual Meeting of ACL, 2020.

https://doi.org/10.18653/v1/p19-1355


The Real Carbon Impact of Compute?

Their estimate was 284 tCO2e for Neural Architecture
Search (NAS); the actual number was only 3.2 tCO2e,
a factor of 88 smaller.

Google stated that training was performed on:

I TPUs (not GPUs)

I on a small proxy task to search for the best models

They also stated that their data centers were much more
energy-efficient than average.

D. Patterson et al. The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, Computer, 2022.

https://doi.org/10.1109/MC.2022.3148714


Follow the Renewables

Figure: Carbon emissions that would be emitted from training BERT
(language modeling on 8 V100s for 36 hours) in 16 different regions at
different times throughout the year.

J. Dodge et al. Measuring the Carbon Intensity of AI in Cloud Instances, Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency (FAccT ’22), 2022.

https://doi.org/10.1145/3531146.3533234


. . . or Use Less Compute

Figure: Back-propagation FLOPs, updated neurons and classification
accuracy for ResNet-32 trained on CIFAR-10.

A. Bragagnolo, E. Tartaglione, M. Grangetto. To Update or not to Update? Neurons at Equilibrium in Deep Models,
Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022.

https://papers.nips.cc/paper_files/paper/2022/hash/8b2fc235787852ead92da2268cd9e90c-Abstract-Conference.html


Model Compression

Table: Comparison to ZeroFL

L. Grativol et al. Federated learning compression designed for lightweight communications, Proc. of ICECS 2023,
IEEE, 2023.

https://doi.org/10.1109/ICECS58634.2023.10382717


So, the Real Carbon Impact of Compute?

If one combines:

I renewables-powered data centers,

I efficiency gains on learnt models and

I sobriety in model effectively deployed,

carbon footprint estimates may grow unrealistic.

The only way to quantify the impact of computing on the
environment is to publish consumption data, along with the
methodology.



Beyond Training (Large) Models

Figure: Direct and indirect environmental impacts of AI compute and
applications

OECD. Measuring the Environmental Impacts of Artificial Intelligence Compute and Applications, OECD Digital
Economy Papers, 2022.

https://doi.org/10.1787/7babf571-en
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Inference is Costly

C.J. Wu et al. Sustainable AI: Environmental Implications, Challenges and Opportunities, Proc. of MLSys 2022,
2022.

https://arxiv.org/abs/2111.00364


Lack of Information

Data on the environmental impacts of AI compute is not
widely available in a standardised and validated form.

This data limitation is particularly acute for measurements
of AI compute water consumption and full lifecycle im-
pacts, as these are currently underexplored and underre-
ported.

OECD. Measuring the Environmental Impacts of Artificial Intelligence Compute and Applications, OECD Digital
Economy Papers, 2022.

https://doi.org/10.1787/7babf571-en


Lifecycle Assessment of AI Services

Figure: Sankey diagram of parts of Rolnick’s paper references in terms of
environmental evaluation

A.L. Ligozat et al. Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle
Assessment of AI Solutions, Sustainability, 2022.

https://www.mdpi.com/2071-1050/14/9/5172
https://www.mdpi.com/2071-1050/14/9/5172


Beyond AI Models I

Figure: Different tasks involved in an AI service

A.L. Ligozat et al. Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle
Assessment of AI Solutions, Sustainability, 2022.

https://www.mdpi.com/2071-1050/14/9/5172
https://www.mdpi.com/2071-1050/14/9/5172
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AI and the Edge (of the Internet)
Facial emotion recognition (with CNNs) can be 47.42× to 65.39×
more energy-efficient if one replaces RGB cameras with event
cameras.

Figure: Overview of the proposed contributions to facial emotion
recognition using event-based cameras.

S. Barchid et al. Spiking-Fer: Spiking Neural Network for Facial Expression Recognition With Event Cameras, Proc.
of CBMI’23, ACM, 2023.

https://arxiv.org/pdf/2304.10211.pdf


Is AI Yet Another Information Technology?

AI systems highly depend on the availability of the Web, of the
Internet of Things (IoT), on the widespread adoption of phones
with camera, etc.

Is there anything special about AI?



Environnemental Impact of IT I

The carbon footprint of IT represents ∼2% of all human activities.

Figure: Estimates of ICT’s carbon footprint from studies published before
2015

C. Freitag et al. The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations,
Patterns, Cell Press, 2021.

https://doi.org/10.1016/j.patter.2021.100340


Environnemental Impact of IT II
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www.mines-stetienne.fr

La sobriété 
        numérique

40 pratiques accessibles 
pour les PME et ETI

Julien De Benedittis
Nadine Dubruc
Michelle Mongo
Sophie Peillon Octobre 2023



Jevons Paradox

Improving energy efficiency of a system does not always lead to a
decrease in energy use. In fact, it is common to observe a rebound
effect: a net increase in energy use.

I Improved steam engine → higher use of coal

I Cheaper fuel → more trips

I Teleconferences → more business trips

I Cheaper electronic devices → more devices per household

I . . .

I home virtual assistant → +13.5% energy consumption

K.-j. Chen et al. Influence of Rebound Effect on Energy Saving in Smart Homes, Cross-Cultural Design: Applications
in Cultural Heritage, Creativity and Social Development (CCD 2018), 2018.

https://link.springer.com/10.1007/978-3-319-92252-2_21


Rebounds in XG Network Communications?

In future generations of communication networks, AI may both:

I improve the energy efficiency of communications (e.g. via
multi-armed bandits) and

I help process higher amounts of data being exchanged over
networks.

H. El Hassani, A. Savard, E. Veronica Belmega. Energy-Efficient 1-Bit Feedback NOMA in Wireless Networks with
No CSIT/CDIT, IEEE Statistical Signal Processing Workshop, 2021.

https://hal.science/hal-03227273/
https://hal.science/hal-03227273/
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No AI?

Collecting detailed temperature data in a building helped change
HVAC settings and reduce overall consumption by 35-40%.

(a) Before (b) After

Figure: Temperature measurements in office buildings in Saint-Étienne
(january-february 2023)

I. Fatokun et al. Modular Knowledge integration for Smart Building Digital Twins, Linked Data in Architecture and
Construction Workshop, CEUR-WS.org, 2023.

https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_9058.pdf


Sustainable AI @ IMT

Renewability

Efficiency

Sobriety

Data Ecosystems

Emb./Distributed AI

Hybrid AI

AI and Human
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Conclusion

Advanced techniques exist both to reduce the environmental
impact of engineered systems through AI and to improve AI
efficiency.

Rebound effects may occur because of efficiency gains, leading to
net increase in FLOPs executed by AI systems.

Potential benefits of AI on the environment have yet to be fully
quantified.

Until they are, classical AI tools may also help reduce our
environmental impact with few FLOPs.
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